Stability of ideal lattices from quadratic number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Ideal Lattices from Quadratic Number Fields

We study semi-stable ideal lattices coming from quadratic number fields. We prove that all ideal lattices of trace type from rings of integers of imaginary quadratic number fields are semi-stable. For real quadratic fields, we demonstrate infinite families of semi-stable and unstable ideal lattices, establishing explicit conditions on the canonical basis of an ideal that ensure stability; in pa...

متن کامل

Fast ideal cubing in imaginary quadratic number and function fields

We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks’ NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our...

متن کامل

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

Fast Ideal Arithmetic in Quadratic Fields

Ideal multiplication and reduction are fundamental operations on ideals and are used extensively in class group and infrastructure computations; hence, the efficiency of these operations is extremely important. In this thesis we focus on reduction in real quadratic fields and examine all of the known reduction algorithms, converting them whenever required to work with ideals of positive discrim...

متن کامل

Improvements in the computation of ideal class groups of imaginary quadratic number fields

We investigate improvements to the algorithm for the computation of ideal class groups described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing the linear algebra phase. We achieve a significant speed-up and are able to compute ideal class groups with discriminants of 110 decimal digits in less than a week.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2014

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-014-9565-8